POLINOMIOS
Ver el enlace video
Definición de polinomio
Un polinomio es una expresión algebraica compuesta de dos o más monomios.
Un polinomio es una expresión algebraica de la forma:
P(x) = an xn + an - 1 xn - 1 + an - 2 xn - 2 + ... + a1 x1 + a0
Siendo an, an -1 ... a1 , ao números, llamados coeficientes.
ao es el término independiente.
Grado de un polinomio
El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada lavariable x.
Polinomio de grado cero
P(x) = 2
Polinomio de primer grado
P(x) = 3x + 2
Polinomio de segundo grado
P(x) = 2x2+ 3x + 2
Polinomio de tercer grado
P(x) = x3 − 2x2+ 3x + 2
Polinomio de cuarto grado
P(x) = x4 + x3 − 2x2+ 3x + 2
Clases de polinomios
Polinomio nulo
El polinomio nulo tiene todos sus coeficientes nulos.
Polinomio homogéneo
El polinomio homogéneo tiene todos sus términos o monomios con el mismo grado.
P(x) = 2x2 + 3xy
Polinomio heterogéneo
Los términos de un polinomio heterogéneo son de distinto grado.
P(x) = 2x3 + 3x2 − 3
Polinomio completo
Un polinomio completo tiene todos los términos desde el término independiente hasta el término de mayor grado.
P(x) = 2x3 + 3x2 + 5x − 3
Polinomio ordenado
Un polinomio está ordenado si los monomios que lo forman están escritos de mayor a menor grado.
P(x) = 2x3 + 5x − 3
Polinomios iguales
Dos polinomios son iguales si verifican:
1Los dos polinomios tienen el mismo grado.
2Los coeficientes de los términos del mismo grado son iguales.
P(x) = 2x3 + 5x − 3
Q(x) = 5x − 3 + 2x3
Polinomios semejantes
Dos polinomios son semejantes si verifican que tienen la misma parte literal.
P(x) = 2x3 + 5x − 3
Q(x) = 5x3 − 2x − 7
Tipos de polinomios según el número de términos
Monomio
Es un polinomio que consta de un sólo monomio.
P(x) = 2x2
Binomio
Es un polinomio que consta de dos monomios.
P(x) = 2x2 + 3x
Trinomio
Es un polinomio que consta de tres monomios.
P(x) = 2x2 + 3x + 5
Valor numérico de un polinomio
Es el resultado que obtenemos al sustituir la variable x por un número cualquiera.
P(x) = 2x3 + 5x − 3 ; x = 1
- P(1) = 2 (1)3 + 5 (1) − 3
- = 2 (1) + 5(1) − 3
- = 2 + 5 - 3
- = 7 - 3 = 4
Suma de polinomios
Para sumar dos polinomios se suman los coeficientes de los términos del mismo grado.
P(x) = 2x3 + 5x − 3 Q(x) = 4x − 3x2 + 2x3
1Ordenamos los polinomios, si no lo están.
Q(x) = 2x3 − 3x2 + 4x
P(x) + Q(x) = (2x3 + 5x − 3) + (2x3 − 3x2 + 4x)
2Agrupamos los monomios del mismo grado.
P(x) + Q(x) = 2x3 + 2x3 − 3 x2 + 5x + 4x − 3
3Sumamos los monomios semejantes.
P(x) + Q(x) = 4x3 − 3x2 + 9x − 3
También podemos sumar polinomios escribiendo uno debajo del otro, de forma que los monomios semejantes queden en columnas y se puedan sumar.
P(x) = 7x4 + 4x2 + 7x + 2 Q(x) = 6x3 + 8x +3
P(x) + Q(x) = 7x4 + 6x3 + 4x2 + 15x + 5
No hay comentarios:
Publicar un comentario